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Abstract
The question of robustness of a network under random ‘attacks’ is treated
in the framework of critical phenomena. The persistence of spontaneous
magnetization of a ferromagnetic system to the random inclusion of
antiferromagnetic interactions is investigated. After examining the static
properties of the quenched version (in respect of the random antiferromagnetic
interactions) of the model, the persistence of the magnetization is also analysed
in the annealed approximation, and the difference in the results are discussed.

PACS numbers: 89.20.−a, 05.50.+q, 64.60.Cn

1. Introduction

The investigation on resilience of networks, which examines the persistence/breakdown of
some global properties of a graph under, for instance, the removal of vertices or edges,
is known to have practical importance. Many ‘real networks’ (internet, highways, many
biological systems, et cetera) depend on the fact that there exist links between the nodes to
ensure their functionality. A damage that breaks the interconnection between vertices can
trigger a profound impact on the network [1]. The connection of these questions to the
percolation theory is clear, which has been a powerful tool to tackle these problems [2] (see
also [3, 4]).

In this work, the question of resilience of networks is analysed in the framework of
critical phenomena of magnetic systems, and is not directly related to the classical problems
concerning the existence of giant components in a graph [5, 6].

Critical phenomena have been exhaustively exploited in networks [7, 8], and it was
immediately noted that it displays a quite rich thermodynamical behaviour when compared
to regular lattice structures [11–14] or gives place to nontrivial effects [15, 16]. This shows
the role of the topology of the underlying graph on critical behaviour. Moreover, networks
constitute a path towards a more ‘realistic’ system of mean-field models, the main cause being
the introduction of (finite) connectivity as a parameter [17–22].
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This work will focus on the persistence of a order imposed by a background environment
to random inclusion of opposite effects on the network. More precisely, starting from
a ferromagnetic system, some of its interactions are weakened (or even changed) by
antiferromagnetic ones. The criterion for the ‘functionality’ of the network will be the
ferromagnetic order of the model, and by ‘resilience’ it means how strong is the spontaneous
magnetization against random introduction of antiferromagnetic interaction that contributes
to the disorder. The model is detailed in section 2, and the thermodynamical analysis of its
quenched version is given in section 3, followed by a characterization of the order–disorder
critical line in the annealed approximation in section 4. The critical line that determines the
breakdown of the ordered phase is discussed in section 5, and the last section is devoted to
conclusions.

2. Model

Consider a (finite) graph �N (|�N | = N) where each vertex x ∈ �N allocates an Ising spin
σx ∈ {−1, 1}. The Hamiltonian is given by

H({σx}, {axy}) = − J

2N

( ∑
x∈�N

σx

)2

+ JA

∑
x,y∈�N
x<y

axyσxσy, (1)

where the first term represents the ferromagnetic interaction (J/N > 0) between every pair of
spins and the second sum is the antiferromagnetic interaction (−JA < 0) between some pair of
spins. Therefore, the network is a complete graph where the edges represent interactions. Note
that the antiferromagnetic interactions do not constitute new edges on the graph themselves,
but they weaken the pre-existent ferromagnetic edges competitively. The matrix {axy} decides
if two vertices, x and y, have antiferromagnetic interaction (axy = 1) or not (axy = 0), and
the couplings {axy} are independent and identically distributed random variables that obey the
distribution

P(axy) =
(

1 − p

N

)
δaxy ,0 +

p

N
δaxy ,1. (2)

It is known that the quenched version of model (1) without the ferromagnetic term (the first
sum) is a frustrated system with a spin-glass phase at low temperatures [23] (since the model
has a single sublattice). Therefore, between the two effects of antiferromagnetic interactions,
namely the contribution to disorder and a contribution to ferromagnetic order (due to the effect
of frustration arisen in some loops of the graph), the former dominates over the later.

As usual, the partition function is

Z(β, {axy}) := Tr{σx } e−βH({σx },{axy }), (3)

where β is the inverse of the temperature T (kB = 1) and the trace indicates the sum over
2N states. This partition function also depends on the configuration of the antiferromagnetic
interactions. Finally, given a function g = g({axy}) of the set of random variables {axy}, the
average of g over the configuration {axy} will be denoted as

〈g〉 :=
∫

g({axy})
∏
x<y

P({axy}) daxy. (4)
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3. Thermodynamics

The (quenched) free energy fq of the model is evaluated through the replica trick

fq(β) = − lim
N→∞

1

βN
〈ln Z(β)〉 = − lim

n→0
lim

N→∞
1

βNn
ln〈Zn(β)〉, (5)

where besides the analytic continuation in n ∈ N → n ∈ R, the order of the limits N → ∞
and n → 0 was changed as usual. Then, one should compute 〈Zn(β)〉, which can be casted as

〈Zn(β)〉 =
(

NβJ

2π

) n
2

(
n∏

α=1

∫
R

dλα

)
Tr{σα

x } exp

[
−Np

2
− NβJ

2

n∑
α=1

(λα)
2

+ βJ

n∑
α=1

λα
∑
x∈�N

σα
x +

p

2N

∑
x,y∈�N

e−βJA

∑n
α=1 σα

x σα
y + O(1)

]
. (6)

Throughout this work, upper and lower indices at spin variables indicate replica index (Greek
letter) and site position (roman letter), respectively.

Introducing the order parameter [24]

ψ(µ) := 1

N

∑
x∈�N

δ{σα
x },{µα}, (7)

where δ{σα
x },{µα} := ∏n

α=1 δσα
x ,µα , equation (6) can be written as

〈Zn(β)〉 ∼
(

NβJ

2π

) n
2

(
n∏

α=1

dλα

)∫
DψDψ̂ e−Nφq [ψ,ψ̂](β,{λα}), (8)

where

φq[ψ, ψ̂](β, {λα}) := p

2
+

βJ

2

n∑
α=1

(λα)
2 + Tr{µα}ψ(µ)ψ̂(µ)

− p

2
Tr{µα}Tr{τα}ψ(µ)ψ(τ) e−βJA

∑n
α=1 µατα − ln ζ [ψ̂](β, {λα}) (9)

and

ζ [ψ̂](β, {λα}) := Tr{σα} exp

[
βJ

n∑
α=1

λασα + ψ̂(σ )

]
. (10)

Apart from a factor β, φq[ψ, ψ̂](β, {λα}) is just the variational free energy. Equation (8)
suggests that one should invoke the saddle-point method to determine the stationary free
energy. The extremum conditions, necessary to ensure the infimum of φq over the suitable
functions (ψ and ψ̂) and variables ({λα}), are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(µ) = 1

ζ [ψ̂](β, {λα}) exp

[
βJ

n∑
α=1

λαµα + ψ̂(µ)

]

ψ̂(µ) = pTr{τα}ψ(τ) exp

[
−βJA

n∑
α=1

µατα

]

λα = 1

ζ [ψ̂](β, {λα})Tr{σα}σα exp

[
βJ

n∑
α=1

λασα + ψ̂(σ )

]
.

(11)
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In an attempt to solve the above equations, one should cast the replica symmetric Ansatz⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ(µ) = ψ

(
n∑

α=1

µα

)
=

∫
R

dhP (h)
eβh

∑n
α=1 µα

[2 cosh(βh)]n

ψ̂(µ) = ψ̂

(
n∑

α=1

µα

)
= p

∫
R

dyQ(y)
eβy

∑n
α=1 µα

[2 cosh(βy)]n

λα = λ, ∀α ∈ {1, . . . , n},

(12)

where P and Q are probability distributions.
In the n → 0 limit, one can show that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ [ψ̂](β, {λα}) = ep

ψ(x) = e−p

∞∑
r=0

pr

r!

⎛
⎝ r∏

j=1

∫
R

dyjQ(yj )

⎞
⎠ exp

[
βx

(
Jλ +

r∑
k=1

yk

)]

ψ̂(x) = p

∫
R

dhP (h)

[
cosh (βJA − βh)

cosh (βJA + βh)

] x
2

λ = e−p

∞∑
r=0

pr

r!

⎛
⎝ r∏

j=1

∫
R

dyjQ(yj )

⎞
⎠ tanh

[
β

(
Jλ +

r∑
k=1

yk

)]
,

(13)

the (quenched) free energy fq is evaluated as

βf (β) = βJλ2

2
+

p

2
ln 2 + p

∫
R

dhP (h)

∫
R

dyQ(y) ln cosh [β (h + y)] − p

2

∫
R

dh1P(h1)

×
∫

R

dh2P(h2) ln{eβh1 cosh[β(h2 − JA)] + e−βh1 cosh[β(h2 + JA)]}

− ln 2 − e−p

∞∑
r=0

pr

r!

[
r∏

s=1

∫
R

dysQ(ys)

]
ln cosh

⎡
⎣β

⎛
⎝Jλ +

r∑
j=1

yj

⎞
⎠
⎤
⎦ , (14)

the extremum condition leads P and Q to satisfy⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(h) = e−p

∞∑
r=0

pr

r!

⎛
⎝ r∏

j=1

∫
R

dyjQ(yj )

⎞
⎠ δ

(
h −

[
Jλ +

r∑
k=1

yk

])

Q(y) =
∫

R

dhP (h)δ

(
y +

1

β
tanh−1[tanh(βJA) tanh(βh)]

)
,

(15)

and λ is calculated through the last equation of (13). The above set of equations (15) can be
unified as

P(h) = e−p

∞∑
r=0

pr

r!

⎛
⎝ r∏

j=1

∫
R

dhjP (hj )

⎞
⎠

× δ

(
h −

[
Jλ − 1

β

r∑
k=1

tanh−1[tanh(βJA) tanh(βhk]

])
. (16)

In the context of replica method, the formulae for the magnetization, m, and the spin-
glass-order parameter, q, are given by

m = lim
N→∞

1

N

∑
x∈�N

lim
n→0

1

n

n∑
α=1

Tr{ση
z }σ

α
x

〈
n∏

γ=1

e−βH({σγ
u },{auv})

〉
(17)
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Figure 1. Phase diagram with JA/J = 1. The phase ‘m �= 0’ may be a combination of
ferromagnetic and mixed phases.

and

q = lim
N→∞

1

N

∑
x∈�N

lim
n→0

1

n (n − 1)

n∑
α �=θ

Tr{ση
z }σ

α
x σ θ

x

〈
n∏

γ=1

e−βH({σγ
u },{auv})

〉
. (18)

Using (15), (17) and (18), it is possible to see that λ = m,

m =
∫

R

dhP (h) tanh(βh) and q =
∫

R

dhP (h) tanh2(βh), (19)

as usual. The critical line is determined in the neighbourhood of m ∼ 0 and q ∼ 0. In this
regime, the field h is expected to be narrowly distributed around h = 0. Then, the Ansatz

εk :=
∫

R

dhP (h)hk = O(εk), |ε| 	 1, (20)

is introduced in equation (16) to evaluate the transition lines [13]. This Ansatz leads to
m = O(ε) and q = O(ε2), which means that the line of transition from ferromagnetic to
disordered phase is governed by O(ε) in equation (16) and the transition from paramagnetic
to spin-glass phase by the order O(ε2) (ε = 0 is assumed in this case). As a result of these
calculations, one has

βcJ = 1 + p tanh(βcJA) (order–disorder transition line), (21)

and the transition line from spin-glass to paramagnetic phase is evaluated as

p tanh2(βJA) = 1, (22)

which leads to

βcJ = 1

2 (JA/J )
ln

( √
p + 1√
p − 1

)
, p > 1. (23)

Note that this transition line (paramagnetic–spin glass) is absent in the region p < 1.
The phase diagram of the model, generated by equations (21) and (23), is presented in

figure 1. When JA/J � 1 (for a fixed p), the transition line between paramagnetic and spin-
glass phase will be described by the line p = 1, starting from the intersection with the m �= 0

5
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phase and ‘ending at T/J = ∞’. The ‘m �= 0’ phase displays spontaneous magnetization,
and it may be a combination of a ferromagnetic and a mixed phases. The exact scenario of the
‘m �= 0’ phase can be established from a stability analysis [25]1, which will not be provided
here, since hereafter this work will focus on the critical line that separates the ordered phase
and disordered one in comparison with the annealed version of the model.

4. Annealed average

In the annealed approximation, the free energy fa is written as

fa(β) = − lim
N→∞

1

βN
ln〈Z(β)〉. (24)

The problem can be solved in the annealed approximation in a simpler way. Although the
interesting case is the quenched one (which was provided in the previous section), the results
will be derived for comparison.

It is straightforward to show that

〈Z(β)〉 = Tr{σx } exp

{
−Np

2
+

Np

2
cosh(βJA)

+
1

2N
[βJ − p sinh(βJA)]

( ∑
x∈�N

σx

)2

+ O(1)

⎫⎬
⎭ , (25)

and introducing the order parameter

mN := 1

N

∑
x∈�N

σx, (26)

it is easy to show that

〈Z(β)〉 ∼
∫

R

dmN e−Nφa(β,mN ) (27)

for sufficiently large N, where

φa(β,mN) := p

2
− p cosh(βJA)

2
− βJ

2
m2

N +
p sinh(βJA)

2
m2

N +
mN

2
ln

(
1 + mN

1 − mN

)

+
1

2
ln

(
1 − m2

N

) − ln 2. (28)

Therefore, in the thermodynamic limit, with m := limN→∞ mN , the free energy can be
written as

fa(β) = 1

β
inf
m

{φa(β,m)}, (29)

where the infimum of φa is achieved from the solutions of the extremum condition

m = tanh[βJm − p sinh(βJA)m]. (30)

This equation allows one to obtain the critical temperature βc, which then obeys

βcJ = 1 + p sinh(βcJA), (31)

and is clearly different from the correspondent expression (21) from the quenched situation.

1 To be more precise, the stability analysis can also change the exact location of the line that separates the spin-glass
phase and the paramagnetic phase; however, the phase diagram showed in figure 1 is believed to be qualitatively
correct.
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Figure 2. Dependence of the critical temperature on the mean connectivity p (left: quenched case;
right: annealed case).

5. Breakdown of the spontaneous magnetization

This section will analyse the different behaviour of the critical line evaluated in the quenched
and annealed approaches, which are

βcJ = 1 + p tanh(βcJA) (quenched case) (32)

and

βcJ = 1 + p sinh(βcJA) (annealed case). (33)

Firstly, it is easy to see that if p = 0, one recovers the ferromagnetic mean-field result
βcJ = 1 in both cases, as it should be. Now, let p assume nonzero values. Actually, given p
and JA/J , equation (33) may yield two roots, but only the physically reasonable one for the
order–disorder transition is chosen. The numerical solutions of the equations are plotted in
figure 2 as a function of p. As one can see in the figure, for sufficiently small JA (in the sense
that βcJA 	 1), the critical temperature describes a line Tc/J ∼ 1 − p(JA/J ) in both cases.

However, for a fixed value of JA/J , one can see the difference from the quenched and
annealed cases as the mean connectivity p increases. The spontaneous magnetization is broken
for sufficiently large values of p in an abrupt way in the annealed case. On the other hand,
the critical temperature for the quenched case decays slowly, and reaches Tc = 0 for p → ∞
only (see (32)). One should remember, initially, that each vertex links to another N − 1
with ferromagnetic interaction J/N = O(N−1) and an antiferromagnetic interaction (which
is much stronger in the sense that JA = O(1)) with probability p/N = O(N−1).

In the quenched case, where the configuration {axy} remains frozen during an observational
time, only an infinitesimal fraction (ofO(N−1)) of the links has antiferromagnetic interactions.
Suppose that the edge xy (shared between the vertices x and y) is one of them; this edge has a
ferromagnetic component of intensity J/N and an opposite effect of JA (�J/N). Although
the antiferromagnetic part exceeds the ferromagnetic one, the solely effect is make just the
spins σx and σy having opposite signs. Therefore, despite the fact that all the antiferromagnetic

7
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interactions dominates over the ferromagnetic interactions in the links where axy = 1, the total
number of such edges is much smaller than the total number of edges of the network (the
thermodynamic limit is taken for a fixed value of p), which then becomes predominantly
ferromagnetic. This is the cause of the persistence of spontaneous magnetization for any finite
p, as shown in figure 2 (left).

On the other hand, in the annealing approximation, where the antiferromagnetic links
fluctuate during the observation time, one sees an ‘averaged’ antiferromagnetic interaction
between spins (vertices). This means that, although the mean connectivity p is fixed, the
effective number of edges with an antiferromagnetic interaction is much larger (and the
effective intensity is also smaller than JA). Heuristically speaking, the intensity JA is better
distributed over the edges (differently from the quenched case), and the antiferromagnetic
effect is better exploited in the annealed case, which makes the magnetization vanish even for
finite values of p.

6. Conclusions

Throughout this work, the static properties of a diluted antiferromagnet on a ferromagnetic
background was examined, with particular emphasis on the breakdown of the spontaneous
magnetization of the system. The phase diagram displayed a nonzero magnetization at low-
temperature regime for any finite mean connectivity p of antiferromagnetic interactions. The
disordered phase is constituted by a paramagnetic and a spin-glass phase.

The critical temperature of the order–disorder transition, which indicates the breakdown
of the magnetic order of the model, was determined from both the quenched and annealed
approaches. The main difference, noted from figure 2, relies on the fact that the spontaneous
magnetization vanishes for finite values of p in the annealed approximation. These phenomena
are observed due to the rapid fluctuation of the random variables {axy}, which distributes more
efficiently the antiferromagnetic interactions over the whole graph. This means that in the
present work, networks are resilient to non-fluctuating random ‘attacks’ (even strong ones),
while they are weaker to ‘annealing attacks’, which turns the antiferromagnetic interaction
more accessible to the edges, although weakening its mean strength.

Roughly speaking, the present work joined a ferromagnetic complete graph with an
antiferromagnetic random graph given by (2). It will be interesting, for a future work, to test
other topologies for the graphs, since it is known that network topologies do influence the
analysis (see [26–28], for instance, for the evolution of damages on different types of lattices
and dynamics), yielding different results for different network topologies.
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[13] Nikoletopoulos T, Coolen A C C, Pérez Castillo I, Skantzos N S, Hatchett J P L and Wemmenhove B 2004

J. Phys. A: Math. Gen. 37 6455
[14] Leone M, Vázquez A, Vespignani A and Zecchina R 2002 Eur. Phys. J. B 28 191
[15] Bauer M, Coulomb S and Dorogovtsev S N 2005 Phys. Rev. Lett. 94 200602
[16] Khajeh E, Dorogovtsev S N and Mendes J F F 2007 Phys. Rev. E 75 041112
[17] Viana L and Bray A J 1985 J. Phys. C: Solid State Phys. 18 3037
[18] Kanter I and Sompolinsky H 1987 Phys. Rev. Lett. 58 164
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